ATTEMPERATOR IN BOILER PDF

Improper design, operation, maintenance, and control logic for interstage attemperators, in particular, have been associated with a wide range of problems—the most serious being cracking of downstream piping. Because much of this piping is external to the boiler, a breach of the pressure boundary is a threat to personnel safety. Anderson pointed to attemperators as the leading cause of piping failures in combined-cycle plants. Final-stage or terminal attemperators can be another component of concern. Final desuperheaters are not intended for use after startup.

Author:Arashir Zolozahn
Country:Turkmenistan
Language:English (Spanish)
Genre:Environment
Published (Last):12 April 2007
Pages:219
PDF File Size:4.8 Mb
ePub File Size:6.35 Mb
ISBN:150-8-16506-706-4
Downloads:10256
Price:Free* [*Free Regsitration Required]
Uploader:Bajin



Improper design, operation, maintenance, and control logic for interstage attemperators, in particular, have been associated with a wide range of problems—the most serious being cracking of downstream piping. Because much of this piping is external to the boiler, a breach of the pressure boundary is a threat to personnel safety.

Anderson pointed to attemperators as the leading cause of piping failures in combined-cycle plants. Final-stage or terminal attemperators can be another component of concern. Final desuperheaters are not intended for use after startup. The advantages of interstage attemperation, he said, tracing the flow of steam with a laser pointer, were reduced metal temperatures in the final superheater and reheater heat-transfer sections and prevention of carryover into the steam turbine.

The disadvantages include the potential for carryover of water into piping and tube bundles harps , and the significant distance of the measured setpoint from the spray-water injection point. The latter means it takes a relatively long time to respond to process upsets. Anderson next explained how attemperation works and what can go wrong with any desuperheater system, including the following: Overshoot the desired outlet temperature.

Overspray, or the introduction of unvaporized spray water into downstream harps, causing damaging thermal transients. Overspray is generally defined as an attemperator outlet steam temperature of less than 50 deg F above the prevailing saturation temperature.

Defective spray pattern Equipment malfunction—such as leaking valve, clogged or worn spray nozzles, failed nozzle, failed thermal liner in downstream piping Fig 2. Failure of downstream pressure part—such as pipe fittings, heat-transfer tubes, etc Fig 3. The plants were of many different types, including: 1 x 1 and 2 x 1 combined cycles, and cogen only, with operating hours ranging from to , hours and starts from 90 to Single-, double-, and triple-pressure HRSGs, fired and unfired, reheat and non-reheat, horizontal and vertical gas paths.

The primary goal of the assessment effort, which is ongoing and global in scope, is to help operators become proactive in the identification of key drivers for cycle-chemistry- and thermal-transient-induced failures and damage mechanisms. Anderson said that most attemperators have some kind of problem, which often is related to one or more of these variables: Distribution of heat-transfer surface area between the primary and secondary superheaters and reheaters.

Type of gas turbine. Performance of the attemperator control system. Quality and type of attemperator hardware installed. Attemperator piping arrangement. The many presentations and technical papers prepared by Anderson and Dooley based on their HRSG assessment program are having a positive impact. Control valves in cycling service will leak eventually, he added.

If such leakage occurs while the harp is hot, severe thermal-mechanical fatigue damage, and sometimes immediate tube failure results Fig 4. Anderson paused to mention that straight tubes are more tolerant to fatigue damage than bent tubes. This was good news, Anderson said, because this configuration has proven very unreliable in cycling service and no longer offered by most HRSG manufacturers. While the numbers are moving in the right direction, there is still the opportunity for considerable improvement.

Attemperator performance is an area that needs some attention. Hardware There are scores of superheater and reheater surface arrangements, many unique. Anderson showed the group nearly a dozen, pointing out the pros and cons—mostly the latter Figs In Fig 5, the long runs of piping connecting primary and secondary superheaters and reheaters have only one drain each.

If these pipes suffer thermal humping, water will not drain. Instead, it will accumulate below the lower headers and possibly flow up into the harps—a condition conducive to extensive tube failures. Fig 6 illustrates a problem waiting to happen. Note that there is no drain between the attemperator and the superheater harps, so any leaking spray water expected from valve wear and tear must run into either the primary superheater 2 or secondary superheater, depending on which way the pipe slopes.

As previously mentioned, the ASME Code now prohibits attemperator arrangements without automatic drain pots on the interconnecting piping. In Fig 7, there is no drain between the attemperator and the superheater 2 harps as in Fig 6. However, here the pipe housing the attemperator is too short to permit adequate residence time for evaporation at high spray flows. A reheater attemperator is not shown, although one exists. One of the reasons many superheaters and reheaters are not working as envisioned is because they were designed for operating criteria that never materialized.

Variable-area probe-style attemperators were a popular choice for low- to medium-flow applications and sometimes still are when orders for plants powered by gas turbines surged in the late s Fig 8. On paper, these desuperheaters having spray-water control-valve trim in the steam flow stream, offered excellent turndown by virtue of their numerous spray nozzles, Anderson said.

Anderson showed cutaway drawings of a few other attemperators of the multi-port mast type, some designs quite involved, but all with serious limitations in cycling service. One supplier of reheater attemperators thought it could mitigate bending and cracking of long masts—generally attributed to bending moments created by the flow of steam and to flow-induced vibration—by shortening the masts to less than half the diameter of pipes they were installed in.

Anderson said that best attemperation results in E- and F-class combined cycles, based on his experience, are being achieved by variable-area spring-loaded spray nozzles Fig 9.

Fixed-orifice nozzles are not suitable for this service, in his opinion Fig The variable-area nozzles can be used in mast-type systems providing the moving parts of the control valve are located outside the pipe Fig Several attemperator manufacturers have adopted this concept with satisfactory results.

An alternative is the ring-style attemperator which admits spray water normal to the flow of steam Fig 12 , thereby offering better secondary atomization than the mast type, which sprays in the direction of steam flow.

The ring design also ensures distribution of spray flow across the entire cross section of steam flow. Atomization basics. Proper atomization and evaporation of the spray water supplied by an attemperation system is necessary both for good temperature control and to prevent water carryover.

Complete assimilation of injected water into superheated steam involves three steps: primary and secondary atomization, and evaporation. Goal is to create as small a droplet as possible regardless of the water spray flow rate. Variable-area nozzles offer this capability, fixed-orifice nozzles do not. Secondary atomization refers to the break-up of large droplets by the dynamic force of the steam flow.

But for secondary atomization to occur, the dynamic forces acting on a droplet must be greater than the viscous forces holding the droplet together and depends on the relative velocity between the steam and water droplet. This objective is maximized by the ring-type attemperator. Finally, the small droplets produced by secondary atomization boil and evaporate. The time to achieve complete evaporation depends on the total surface area of the water injected and is proportional to the square of the droplet diameter.

Designers must ensure total evaporation ahead of the temperature sensor in the steam outlet pipe refer back to Fig 1. Wetting of the sensor would make it virtually impossible to control steam temperature as intended. Attemperation system design. In addition to specifying that the spray-water flow-control element be located outside the hot steam environment, engineers at Control Components Inc, Rancho Santa Margarita, Calif, suggest adding a thermal barrier to separate the hot and cold working elements to mitigate the intensity of thermal cycles experienced by critical components Fig A proper liner is an important element in every desuperheating station.

In addition to protecting steam piping against thermal shock, it increases steam velocity to improve secondary atomization, creates vortices that improve atomization and enhance mixing, and assist with heat transfer and evaporation.

Fig 14 presents the details. He said that use of a ring-style attemperator might reduce the downstream straight run by the equivalent of a few pipe diameters. CCJ Recent Posts.

BLACKSAD UN LUGAR ENTRE LAS SOMBRAS PDF

The Evolution of Steam Attemperation

Zusida Overshoot the desired outlet temperature. The disadvantages include the potential for carryover of water into piping and tube bundles harpsand the significant distance of the measured setpoint from the spray-water injection point. Because I presume that there is no tailor made block same like of Honeywell. Note that there is no drain between the attemperator and the superheater harps, boiiler any leaking spray water expected from valve wear and tear must run into either the primary superheater 2 or secondary superheater, depending on which way the pipe slopes.

EL METODO II LITA DONOSO FREE PDF

ATTEMPERATORS

Click Here to join Eng-Tips and talk with other members! Already a Member? Read this white paper to learn more. In this white paper, learn how you can configure freely without requiring any custom development, and quickly update configurations as your needs evolve; retain product, customer and systems knowledge over time, even after employee turnover and generational changes; and future-proof your PLM with multiple updates a year, keeping you ahead of the pack with the latest platform capabilities. Our newest eBook gives a deep overview on how using 3D printed jigs and fixture aids work to streamline operations. This includes challenging trends on contractors and distributors like new refrigerants, growing automation, complex sensors and monitoring, green initiatives and a technician shortage. We look at these trends and outline actionable insights on how it all can be turned into a competitive advantage and business opportunity.

CONVERSIE SCAN TEKSTVERWERKING PDF

ATTEMPERATOR IN BOILER PDF

.

JAGALAH ALLAH ALLAH MENJAGAMU PDF

Boiler Attemperator

.

Related Articles